Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Pedreira, Taís de Medeiros
 |
Orientador(a): |
Hippert, Henrique Steinherz
 |
Banca de defesa: |
Vieira, Marcel de Toledo
,
Christo, Eliane da Silva
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/8020
|
Resumo: |
As previsões a curto prazo da carga elétrica (de algumas horas até alguns dias à frente) são essenciais para o planejamento, controle e operação dos sistemas de energia, tanto por por razões técnicas quanto financeiras. Como não é possível estocar grandes quantidades, torna-se indispensável um maneira eficaz de programar a produção da energia para que ela atenda a demanda. Por conta disso, uma grande literatura desenvolveu-se sobre o assunto. Devido à complexidade das séries de carga e à dependência não-linear destas carga em relação a diversas variáveis exógenas, os sistemas de previsão mais frequentemente propostos em trabalhos recentes são aqueles baseados em algoritmos complexos de inteligência computacional. No entanto, métodos lineares simples ainda são muito comumente usados, por si sós ou em combinação com técnicas não-lineares. Um desses métodos é o de Holt-Winters-Taylor, que é uma adaptação do conhecido método de amortecimento exponencial de Holt-Winters para que múltiplas sazonalidades possam ser modelados concomitantemente. Este trabalho implementa três variantes deste método HWT e analisa seus desempenhos em duas séries de dados reais de carga. Verificou-se que uma combinação linear dessas variantes nitidamente supera o método HWT original e fornece previsões precisas, com um baixo custo computacional. |