Métodos univariados e multivariados para previsão da demanda de energia elétrica em curto prazo: um estudo comparativo

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Guilhermino Neto, Guilherme lattes
Orientador(a): Hippert, Henrique Steinherz lattes
Banca de defesa: Vieira, Marcel de Toledo lattes, Falco, Glaucia de Paula lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/3511
Resumo: Previsões de demanda em curto prazo são fundamentais para o planejamento e o controle da produção em sistemas de energia elétrica. Como não é viável manter estoques de segurança para compensar demandas inesperadas, a programação da geração é baseada em previsões feitas com antecedência de algumas horas. Ao longo dos anos, muitos métodos foram testados para a resolução do problema. Dentre os mais populares estão os univariados, em que a demanda é escrita como uma função linear de seu comportamento histórico e prevista por técnicas estatísticas. Também é frequente o uso de métodos multivariados, que levam em conta o efeito não- linear de variáveis climáticas, como a temperatura do ar, sobre o comportamento do consumidor. Para este caso, a literatura recente sugere o uso de previsores de inteligência computacional, como as redes neurais artificiais. Embora alguns autores afirmem que deve-se considerar métodos multivariados, outros defendem que, para previsões de curto prazo (horizonte de poucas horas), a inclusão de variáveis climáticas traz poucos benefícios, posto que seus efeitos levam mais tempo para serem percebidos. Neste trabalho, experimentamos diversos métodos univariados e multivariados a fim de comparar seu desempenho sobre uma base de dados da cidade do Rio de Janeiro. Para estes dados, mostramos que é possível obter, por meio de um simples previsor linear univariado (um modelo de curva de carga cuja componente-padrão é prevista pelo amortecimento de Holt-Winters-Taylor), resultados próximos aos de técnicas mais complexas, porém, com as vantagens de maior robustez, parcimônia e economia de recursos computacionais.