Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Guilhermino Neto, Guilherme
 |
Orientador(a): |
Hippert, Henrique Steinherz
 |
Banca de defesa: |
Vieira, Marcel de Toledo
,
Falco, Glaucia de Paula
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/3511
|
Resumo: |
Previsões de demanda em curto prazo são fundamentais para o planejamento e o controle da produção em sistemas de energia elétrica. Como não é viável manter estoques de segurança para compensar demandas inesperadas, a programação da geração é baseada em previsões feitas com antecedência de algumas horas. Ao longo dos anos, muitos métodos foram testados para a resolução do problema. Dentre os mais populares estão os univariados, em que a demanda é escrita como uma função linear de seu comportamento histórico e prevista por técnicas estatísticas. Também é frequente o uso de métodos multivariados, que levam em conta o efeito não- linear de variáveis climáticas, como a temperatura do ar, sobre o comportamento do consumidor. Para este caso, a literatura recente sugere o uso de previsores de inteligência computacional, como as redes neurais artificiais. Embora alguns autores afirmem que deve-se considerar métodos multivariados, outros defendem que, para previsões de curto prazo (horizonte de poucas horas), a inclusão de variáveis climáticas traz poucos benefícios, posto que seus efeitos levam mais tempo para serem percebidos. Neste trabalho, experimentamos diversos métodos univariados e multivariados a fim de comparar seu desempenho sobre uma base de dados da cidade do Rio de Janeiro. Para estes dados, mostramos que é possível obter, por meio de um simples previsor linear univariado (um modelo de curva de carga cuja componente-padrão é prevista pelo amortecimento de Holt-Winters-Taylor), resultados próximos aos de técnicas mais complexas, porém, com as vantagens de maior robustez, parcimônia e economia de recursos computacionais. |