Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Gomes, Luciana
 |
Orientador(a): |
Hippert, Henrique Steinherz
 |
Banca de defesa: |
Fonseca Neto, Raul
,
Santos, Marcelo Costa Pinto e
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/3522
|
Resumo: |
Em muitos problemas é necessária a descrição qualitativa dos dados (por exemplo, usando variáveis tais como sexo ou idade de um paciente). Para uso em redes neurais artificiais, contudo, estas variáveis têm que ser recodificadas quantitativamente. Neste trabalho, foram feitas simulações com seis técnicas bastante conhecidas de recodificação de variáveis qualitativas: Dummy 1-de-c, Dummy 1-de-(c-1), Termômetro, Numérica, Gray e Binária. O desempenho das seis técnicas foi comparado com o desempenho obtido utilizandose os fatores de Análise de Correspondência (AC) ao invés das variáveis qualitativas originais. O uso destes fatores de AC como forma de codificar variáveis de entrada de uma rede neural ainda não foi relatado na literatura. As simulações forem feitas com três bases de dados. Duas delas envolvem problemas de classificação de padrões em duas classes (o desempenho foi medido por meio da proporção de classificações corretas); a terceira base envolve um problema de aproximação de funções (o desempenho foi medido por meio dos erros MAPE e MSE). Nas bases de dados Seguros e Consumo, os resultados obtidos para AC são equivalentes aos das demais técnicas aplicadas e na base Córneas, não foi satisfatório, não demonstrando, assim, vantagens sobre as demais técnicas. |