Uma abordagem bottom-up completa para reconhecimento de atividades humanas em imagens através da pose estimada com redes convolucionais

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Soares, Igor Muniz lattes
Orientador(a): Cruz Júnior, Gelson da lattes
Banca de defesa: Cruz Júnior, Gelson da, Fernandes, Deborah Silva Alves, Calixto, Wesley Pacheco, Vinhal, Cássio Dener Noronha
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC)
Departamento: Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/10191
Resumo: In the last few years, significant improvements in the computer vision were made, making it possible to obtain important information from images. Some of the challenges for a better understanding of a scene are the detection of people and the recognition of the activities they are performing. This work propose a single end-to-end model able to detect people, estimate their pose, and recognize each one of their activities by their pose. The experiments show that the model has reached the state of the art in the tasks of person detection and pose estimation on MSCOCO Dataset 2017, and can recognize walking, running, sitting, and standing activities with an F1 score of 0.7344. The model is real-time with an inference rate of approximately 20 frames/sec.