Classificação de imagens hiperespectrais utilizando redes neurais convolucionais para caracterização da ocupação desordenada do solo sobre um recorte do Parque Nacional da Tijuca

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Vale, Italo Guimarães do lattes
Orientador(a): Sanchez Delgado, Angel Ramon lattes
Banca de defesa: Sanchez Delgado, Angel Ramon lattes, Sousa, Gustavo Mota de lattes, Cruz, Marcelo Dib lattes, Pinto, Jose Wilson Coura lattes, Oliveira, Francisco Bruno Souza lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência, Tecnologia e Inovação em Agropecuária
Departamento: Pró-Reitoria de Pesquisa e Pós-Graduação
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://rima.ufrrj.br/jspui/handle/20.500.14407/15770
Resumo: O Parque Nacional da Tijuca (PNT) localiza-se na zona urbana do município do Rio de Janeiro, no Estado do Rio de Janeiro, sendo importante fragmento do domínio da Mata Atlântica, coberto por floresta ombrófila densa secundária em avançado estágio de regeneração. O PNT possui 3.953 ha e está inserido na maior floresta urbana do mundo, presta diversos serviços ambientais tais como: proteção do solo ao evitar erosão e captura de carbono por desmatamento evitado, além de ser importante área para pesquisas ambientais. O PNT é divido em quatro setores: Setor Floresta da Tijuca, Pedra Bonita/Pedra da Gávea, Pretos Forros/Covanca e Serra da Carioca. Para o estudo foi usado o recorte de uma cena, de uma imagem hiperespectral do sensor Hyperion sobre o setor Serra da Carioca e uma área urbana sobre o bairro de Botafogo, de forma a caracterizar as coberturas florestais e urbanas, objetos da pesquisa. As técnicas de Sensoriamento Remoto (SR) são importantes ferramentas para classificação da cobertura e uso da terra em locais de acesso restrito como o PNT. Técnicas de SR usando assinaturas espectrais obtidas de imagens hiperespectarais são promissoras para classificação da cobertura e uso da terra. Este estudo teve como objetivo aplicar metodologia baseada em Redes Neurais Convolucionais (RNCs) e algoritmos de aprendizagem profunda na implementação de modelo computacional para classificação de imagens hiperespectrais, por reconhecimento de padrões para mapeamento da cobertura e uso da terra. O mapa de referência foi obtido usando o método de extração de características baseado em objeto, corrigido manualmente para as classes adequadas. Deste mapa foram extraídas e anotadas 1200 assinaturas espectrais para criar o conjunto de dados, das quais 700 assinaturas foram usadas no conjunto de treinamento e validação, sendo este subdivido igualmente entre as classes floresta e urbano do estudo, por fim 500 assinaturas foram utilizadas como conjunto de teste. Foram utilizadas duas cenas de imagens hiperespectrais do sensor Hyperion a bordo do satélite Earth Observing-1 (EO-1), lançado em novembro de 2000 como parte do projeto NASA's New Millennium Program (NMP) da Agência Espacial Norte-americana (do inglês NASA Nacional Aeronautics and Space Administration). As imagens passaram pelas seguintes correções: remoção de bandas anômalas, correção atmosférica, correção geométrica, redução de ruídos e por fim foram normalizadas. O conjunto de dados de teste foi submetido às abordagens das RNCs, com e sem aumento de dados, e os resultados comparados com o mapa de referência. O desempenho dos modelos foi avaliado pelo F- score, a acurácia, a precisão, a revocação ou sensibilidade e a matriz de confusão. As análises dos resultados com as configurações usadas nas RNCs mostraram que o emprego da abordagem sem aumento de dados alcançou 0,88 de acurácia enquanto que a abordagem com aumento de dados alcançou 0,92 de acurácia, além de contornar o problema de sobre ajuste ocorrido na configuração da RNC sem aumento de dados. Logo, pode-se concluir que o emprego de RNCs e algoritmos de aprendizado profundo na classificação de imagens hiperespectrais podem ser amplamente utilizados no mapeamento da cobertura e uso da terra com a finalidade de monitoramento de ocupações desordenadas da terra.