Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Santos, Carlos Alexandre Silva dos
Orientador(a): Welfer, Daniel
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pampa
Programa de Pós-Graduação: Mestrado Acadêmico em Engenharia Elétrica
Departamento: Campus Alegrete
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2028
Resumo: O reconhecimento automático de imagens de marca de gado é uma necessidade para os órgãos governamentais responsáveis por esta atividade. Para auxiliar neste processo, este trabalho propõe uma arquitetura que seja capaz de realizar o reconhecimento automático dessas marcas. Nesse sentido, uma arquitetura foi implementada e experimentos foram realizados com dois métodos: Bag-of-Features e Redes Neurais Convolucionais (CNN). No método Bag-of-Features foi utilizado o algoritmo SURF para extração de pontos de interesse das imagens e para criação do agrupa mento de palavras visuais foi utilizado o clustering K-means. O método Bag-of-Features apresentou acurácia geral de 86,02% e tempo de processamento de 56,705 segundos para um conjunto de 12 marcas e 540 imagens. No método CNN foi criada uma rede completa com 5 camadas convolucionais e 3 camadas totalmente conectadas. A 1 ª camada convolucional teve como entrada imagens transformadas para o formato de cores RGB. Para ativação da CNN foi utilizada a função ReLU, e a técnica de maxpooling para redução. O método CNN apresentou acurácia geral de 93,28% e tempo de processamento de 12,716 segundos para um conjunto de 12 marcas e 540 imagens. O método CNN consiste de seis etapas: a) selecionar o banco de imagens; b) selecionar o modelo de CNN pré-treinado; c) pré-processar as imagens e aplicar a CNN; d) extrair as características das imagens; e) treinar e classificar as imagens utilizando SVM; f) avaliar os resultados da classificação. Os experimentos foram realizados utilizando o conjunto de imagens de marcas de gado de uma prefeitura municipal. Para avaliação do desempenho da arquitetura proposta foram utilizadas as métricas de acurácia geral, recall, precisão, coeficiente Kappa e tempo de processamento. Os resultados obtidos foram satisfatórios, nos quais o método CNN apresentou os melhores resultados em comparação ao método Bag-of-Features, sendo 7,26% mais preciso e 43,989 segundos mais rápido. Também foram realizados experimentos com o método CNN em conjuntos de marcas com número maior de amostras, o qual obteve taxas de acurácia geral de 94,90% para 12 marcas e 840 imagens, e 80,57% para 500 marcas e 22.500 imagens, respectivamente.