Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Barboza, Marcelo Bezerra
|
Orientador(a): |
Silva, Jhone Caldeira
|
Banca de defesa: |
Silva, Jhone Caldeira,
Lima, Aline de Souza,
Chagas, Sheila Campos,
Oliveira, Ricardo Nunes de |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Matemática (IME)
|
Departamento: |
Instituto de Matemática e Estatística - IME (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/4541
|
Resumo: |
Given a directed layered graph , we present the algebra A() as a quotient of the free associative or tensor algebra (with unit, over an arbitrarily fixed field of scalars), freely generated by the set of edges in . We calculate the Hilbert series associated with the grading on A() coming from degree in the tensor algebra. We also calculate the group of automorphisms of A() that preserve the (ascending) filtration associated with the grading mentioned above. Despite the fact the main results within this notes remain true for a relatively large class of directed graphs, we stay close to the ones Dn and Ln, n 3, that is, those consisting, respectively, on the Hasse diagram of the partially ordered sets of faces in a regular polygon containing n edges and the power set of {1, . . . , n}. The work teaching us all of the above is [1], by Colleen Duffy. |