Álgebras associadas a grafos orientados em níveis e a propriedade da Koszulidade

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Vasconcelos, José Eder Salvador de lattes
Orientador(a): Silva, Jhone Caldeira lattes
Banca de defesa: Rodrigues, Paulo Henrique de Azevedo, Lima, Aline de Souza, Guerreiro, Marinês, Lemos, Manoel José Machado Soares, Castonguay, Diane
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Matemática (IME)
Departamento: Instituto de Matemática e Estatística - IME (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/4444
Resumo: In this work we study classes of algebras associated with layered directed graphs. Let be a layered directed graph. We determine the algebra Apq; generated by the edges of the graph, satisfying a set of quadratic relations R; and the dual algebra Apq!, associated with grpApqq. For each P Autpq we determine: the algebra Ap q; where is the subgraph of whose vertices are xed by ; the graded trace generating functions Tr pApq; tq and Tr pApq!; tq: We also determine the multiplicities of the irreducible representations of AutpApqq acting on Apq and Apq!: We show that for a layered directed graph , satisfying some hypotheses, AutpApqq K Autpq. Finally, we verify the property Tr pApq; tq Tr pApq!; tq 1 for all P Autpq, called koszulity property. We consider two classes of algebras, the algebra associated to the Hasse graph of the partially ordered set of faces of a star polygon, Ap q; and the algebra associated with the Hasse graph of the lattice of subespaces of a nite dimensional vector space over Fq; ApLpn; qqq: