Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Aguiar, Ademir Alves
|
Orientador(a): |
Gonçalves, Max Leandro Nobre
|
Banca de defesa: |
Gonçalves, Max Leandro Nobre,
Gonçalves, Douglas Soares,
Melo, Jefferson Divino Gonçalves de |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Matemática (IME)
|
Departamento: |
Instituto de Matemática e Estatística - IME (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/4251
|
Resumo: |
In this dissertation we present a semi-local convergence analysis for the Gauss-Newton method to solve a special class of systems of non-linear equations, under the hypothesis that the derivative of the non-linear operator satisfies a majorant condition. The proofs and conditions of convergence presented in this work are simplified by using a simple majorant condition. Another tool of demonstration that simplifies our study is to identify regions where the iteration of Gauss-Newton is “well-defined”. Moreover, special cases of the general theory are presented as applications. |