Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Jorge, Carlos Antônio Campos
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Soares, Anderso da Silva
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Soares, Anderson da Silva,
Coelho, Clarimar José,
Delbem, Alexandre Cláudio Botazzo |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
Departamento: |
Instituto de Informática - INF (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/3813
|
Resumo: |
This work proposes the use of a multi-objective evolutionary algorithm that makes use of subsets stored in a data structure called table in which the best individuals from each objective considered are preserved. This approach is compared in this work with the traditional mono-objective evolutionary algorithm (GA), classical algorithms (PLS and SPA) and another classic multi-objective algorithm (NSGA-II). As a case study, a multivariate calibration problem is presented which involves the prediction of protein concentration in samples of whole wheat from the spectrophotometric measurements. The results showed that the proposed formulation has a smaller prediction error when compared to the mono-objective formulation and with a lower number of variables. Finally,astudyofnoisesensitivityobtainedbythemulti-objectiveformulationshoweda better resultwhen compared tothe other classical algorithmforvariable selection. |