Aplicação de algoritmos genéricos multi-objetivo para alinhamento de seqüências biológicas.

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Ticona, Waldo Gonzalo Cancino
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-09052003-215914/
Resumo: O alinhamento de seqüências biológicas é uma operação básica em Bioinformática, já que serve como base para outros processos como, por exemplo, a determinação da estrutura tridimensional das proteínas. Dada a grande quantidade de dados presentes nas seqüencias, são usadas técnicas matemáticas e de computação para realizar esta tarefa. Tradicionalmente, o Problema de Alinhamento de Seqüências Biológicas é formulado como um problema de otimização de objetivo simples, onde alinhamento de maior semelhança, conforme um esquema de pontuação, é procurado. A Otimização Multi-Objetivo aborda os problemas de otimização que possuem vários critérios a serem atingidos. Para este tipo de problema, existe um conjunto de soluções que representam um "compromiso" entre os objetivos. Uma técnica que se aplica com sucesso neste contexto são os Algoritmos Evolutivos, inspirados na Teoria da Evolução de Darwin, que trabalham com uma população de soluções que vão evoluindo até atingirem um critério de convergência ou de parada. Este trabalho formula o Problema de Alinhamento de Seqüências Biológicas como um Problema de Otimização Multi-Objetivo, para encontrar um conjunto de soluções que representem um compromisso entre a extensão e a qualidade das soluções. Aplicou-se vários modelos de Algoritmos Evolutivos para Otimização Multi-Objetivo. O desempenho de cada modelo foi avaliado por métricas de performance encontradas na literatura.