Transcrição automática de sons polifônicos de guitarra na notação de tablaturas utilizando classificação temporal conexionista

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Gris, Lucas Rafael Stefanel lattes
Orientador(a): Soares, Anderson da Silva lattes
Banca de defesa: Soares, Anderson da Silva, Laureano, Gustavo Teodoro, Barbosa, Yuri de Almeida Malheiros
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RMG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/13749
Resumo: Automatic Guitar Transcription, a branch of Automatic Musical Transcription, is a task with great applicability for musicians of fretted instruments such as the electric guitar and acoustic guitar. Often, musicians on these instruments transcribe or read songs and musical pieces in tablature format, a notation widely used for this type of instrument. Despite its relevance, this annotation is still done manually, making it a very complex process, even for experienced musicians. In this context, this work proposes the use of artificial intelligence to develop models capable of performing the task of transcribing polyphonic guitar sounds automatically. In particular, this work investigates the use of a specific method called Connectionist Temporal Classification (CTC), an algorithm that can be used to train sequence classification models without the need for alignment, a fundamental aspect for training more robust models, as there are few openly available datasets. Additionally, this work investigates multi-task learning for note prediction alongside tablature prediction, achieving significant improvements over conventional learning. Overall, the results indicate that the use of CTC is very promising for tablature transcription, showing only a 14.28% relative decrease compared to the result obtained with aligned data.