Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Barros, Bruno de Mattos
 |
Orientador(a): |
Nascimento, Hugo Alexandre Dantas do Nascimento
 |
Banca de defesa: |
Nascimento, Hugo Alexandre Dantas do,
Ferreira, Deller James,
Mello, Rafael Ferreira Leite de |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
Departamento: |
Instituto de Informática - INF (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/12454
|
Resumo: |
Academic dropout is a problem that affects many public and private university students in Brazil and around the world. Machine learning techniques have been used to mitigate the problem, but still require a lot of manual adjustments. We present in this work, a proposal of an automatic machine learning framework to predict academic dropout, with the goal of obtaining good results without the need for human intervention. This data processing framework includes the following stages: pre-processing, feature vector creation, data splitting into testing and training sets, clustering of data from different degrees for training, model selection, model parameter tunning and explainability. Additionally, we formalize temporal data splitting approaches for train and test datasets, as this task is not adequately addressed in most of the previous works. |