Vibrações não lineares em tubulações com fluido em escoamento

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Prado, Joaquim Orlando
Orientador(a): Prado, Zenón José Guzmán Núñez del lattes
Banca de defesa: Prado, Zenón José Guszmán Núñez del, Silva, Frederico Martins Alves da, Brito, José Luís Vital de
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Engenharia Civil (EEC)
Departamento: Escola de Engenharia Civil - EEC (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/6759
Resumo: In this work, the linear and nonlinear instability of pipes conveying static and pulsating fluid flow is analyzed. The dynamic equation of motion was derived for cantilevered and clamped-clamped pipes. For this purpose, the Euler Bernoulli beam theory and Hamilton’s principle were applied, resulting in a partial differential equation of second order in time. Thus, a model with four degrees of freedom, which satisfies the boundary condition, is used and, the Galekin method is applied to derive the set of coupled non linear ordinary equations of motion which are, in turn, solved by the fourth order Runge-Kutta method, and then some numerical results were obtained as Argand diagram, stability boudaries, time response, phase plane and, Poincaré section, through computational algorithms modeled in C++. These results revealed the importance of the nonlinear terms in the stability of the system, especially in the post-critical analysis, also revealed the existence of quasi-periodic motions, for the system subjected to a static flow and, chaotic motions for pulsating fluid flow