Imersões de variedades com curvaturas seccionais não-negativas

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Lipa Carrizales, Andrés Avelino
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://app.uff.br/riuff/handle/1/12744
Resumo: Neste trabalho iremos detalhar parte de um artigo de M. Do Carmo e E. Lima, onde dada uma variedade Riemanniana completa Mn, n > 1, e uma imersão isométrica ' : Mn ! Rn+1, provaremos que Se Mn é compacta, conexa, orientável e possui curvatura seccional não-negativa, então Mn é mergulhada como o bordo de um corpo convexo e é homeomorfa a Sn. Se Mn não é necessariamente conexa, e orientável em cada componente conexa, suponha também que '(M) não está contida em nenhum hiperplano de Rn+1 e, para cada ponto de M, que '(M) está inteiramente contida em um dos semi-espaços fechados limitado por cada hiperplano tangente. Então '(M) é o bordo de um corpo convexo. Se, além disso, Mn possui curvatura seccional positiva em algum ponto, então Mn é simplesmente conexa e ' é um homeomorfismo sobre sua imagem