Convexidade de hipersuperfícies de Rn+1 com curvaturas seccionais não-negativas

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Brandão, Clabes do Nascimento
Outros Autores: http://lattes.cnpq.br/9695614227047738
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Ciências Exatas
Brasil
UFAM
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/4764
Resumo: O objetivo dessa dissertação é estudar imersões de variedades com curvaturas seccionais não-negativas. Mais precisamente, iremos detalhar um artigo de M. do Carmo e E. Lima, que dá uma nova demonstração de um teorema devida a Sacksteder. Usando argumentos da Topologia Diferencial, os dois autores provaram, entre outras coisas, que uma hipersuperfície completa Mn de Rn+1 com curvaturas seccionais não-negativas é convexa se pelo menos uma dessas curvaturas seccionais for positiva.