Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Machado, Luciana Gonçalves |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://app.uff.br/riuff/handle/1/4086
|
Resumo: |
O objetivo do presente estudo é propor um modelo para a identificação de benchmarks combinando DEA (Data Envelopment Analysis) Game com uma análise de cluster. O DEA Game busca, em um jogo não cooperativo, não apenas a eficiência ideal para uma unidade tomadora de decisão (DMU, do inglês Decision Making Unit), mas também para todos as demais. Uma vez que a abordagem tradicional de DEA Game só fornece o valor das eficiências, este estudo também faz uma análise de agrupamento através da utilização de uma técnica de agrupamento hierárquico, conhecida como método de Ward, a fim de obter referências mais realistas. Estes benchmarks são obtidos na análise de cluster, em que as unidades semelhantes são agrupadas, e é definida como referência a DMU mais eficiente em cada cluster. Permitindo, desta forma, que as unidades ineficientes definam metas e objetivos mais tangíveis para melhorar seu desempenho no futuro. Ao final do trabalho, o modelo proposto é aplicado ao setor de distribuição de energia elétrica e são apresentadas conclusões a partir deste estudo de caso |