Cadeias de Markov: tempo de mistura, cuttoff e redes

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Carneiro, Filipe Ribeiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Matemática
Centro de Ciências Exatas
UFES
Programa de Pós-Graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
51
Link de acesso: http://repositorio.ufes.br/handle/10/7512
Resumo: This work deals with Markov chains in discrete time and finite state space. We treat the convergence of these objects, and define the total variation distance and studied some of their properties , as well as ways of estimating the mixing time, for example, using the eigenvalues of the transition matrix. Present is the one by one relationship between reversible Markov chains and graphs, and how the network theory can help in Markov Chains context. We also define and show some results concerning the so called Cutoff phenomenon, concluding by exhibiting a counter-example due to Aldous.