Semigrupos e o teorema de Gorenstein para singularidades de curvas algébricas planas

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Lannes, Andréa Maria Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Matemática
Centro de Ciências Exatas
UFES
Programa de Pós-Graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
51
Link de acesso: http://repositorio.ufes.br/handle/10/7502
Resumo: The main goal of this dissertation is to present the Gorenstein Theorem for plane curve singularities. We consider two cases: firstly the local case when the singularity has only one branch and after the semilocal case when the singularity has several branches. In the local case the local equation is given by an irreducible series of k[[X, Y ]] and in the semilocal case it is given by a finite product of irreducible series wich are not pairwise associated. A local equation given by such a power series f is called an algebroid plane curve. The following are objects associated to an algebroid plane curve: The local ring O = O(f), its integral closure O˜ of O in its full ring of fractions and the conductor ideal of O˜ in O. We may say that these data encode all the algebraic / geometric informations of the algebroid plane curve (f). Gorenstein Theorem, that was proved in [Go] by D. Gorenstein states that, in both cases (local or semi-local), the codimension (as k-vector spaces) of the conductor ideal in the ring O is equal to the codimension of the ring O in the ring O˜. This provides us with a certain symmetry which is reflected in the semigroup associated to the algebroid plane curve (f). Thus, we also study the symmetry of semigroups of the natural numbers and relate them to the symmetry of the ring O in the local case.