Study of electromyographic patterns of erector spinae and lower-limb muscles during different modalities of gait in post-stroke individuals
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Doutorado em Biotecnologia Centro de Ciências da Saúde UFES Programa de Pós-Graduação em Biotecnologia |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufes.br/handle/10/11384 |
Resumo: | Stroke is one of the leading causes of motor disability in the world. New technologies have been developed to increase efficiency and reduce costs of rehabilitation of poststroke individuals. Objective: To compare electromyographic patterns related to muscle onset/offset, duration of activation and analysis of neuromuscular fatigue of erector spinae (ES) and lower-limb muscles during different modalities of gait in poststroke and healthy individuals. Methodology: The changes in the median frequency (MDF) was analyzed during isometric tasks and walking on a treadmill in healthy individuals (N = 10) to identify fatigue. Ten post-stroke and 30 healthy subjects participated of the second stage of the study, in which ES and three lower-limb muscles were analyzed during different gaits (walking on treadmill and ground, with and without arm swing, and using a walker), with the neuromuscular fatigue analyzed in stroke gait. Muscle analysis was also conducted with two post-stroke subjects while using the UFES’s robotic walker. Results: For the healthy subjects, all the lower-limb muscles showed reduction in their MDF during walking on treadmill. Walking on treadmill had a stronger influence on the onset/offset muscles than the arm swing in the healthy individuals. For post-stroke subjects, their ES muscles presented a similar pattern to the healthy subjects, but the contralateral side had longer activation near the toe-off than the ipsilateral side in both gaits. All the observed changes in the activation for each phase indicated a longer duration of activation of the post-stroke subjects. Regarding neuromuscular fatigue, it was not possible to detect reduced MDF values for post-stroke individuals. The use of the UFES’s robotic walker improved the symmetry of one post-stroke subject, and the symmetry of duration of activation in the swing phase for all muscles of the other subject. Conclusion: MDF changes were detected in non-strenuous exercises in healthy subjects. ES muscle activation is not influenced by arm swing in healthy individuals, with the same behavior in post-stroke individuals. As a finding of this research, we concluded that trunk muscles can be used in rehabilitation processes and also to control robotic devices for assistance or rehabilitation. |