Aplicação de modelos neurais na previsão de séries temporais.

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: LEITE, João Paulo Reus Rodrigues
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Programa de Pós-Graduação: Mestrado - Ciência e Tecnologia da Computação
Departamento: IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
País: Não Informado pela instituição
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/1465
Resumo: Este estudo apresenta uma abordagem original para previsões de valores em séries temporais. O objetivo deste trabalho é o desenvolvimento e validação de um novo modelo baseado em uma arquitetura hierárquica, sua aplicação em uma série histórica real de fundo de investimentos e, por fim, a comparação de seu desempenho com o de outras arquiteturas mais tradicionais, como o MLP e a SVM. Através de sua estrutura, composta por um mapa auto-organizável (SOM) e uma máquina de vetor de suporte (SVM), desejasse processar os dados do espaço de entrada, extraindo suas características estatísticas mais importantes e inserindo-os em um contexto, esperando, com isso, alcançar um desempenho de previsão superior aos modelos tradicionais. Dados de séries de fundo de investimentos se apresentam geralmente em agrupamentos bem separados, ou clusters, que se revezam ciclicamente no tempo e se caracterizam por comportamentos distintos, onde a série demonstra maior ou menor volatilidade. Por este motivo, em uma segunda etapa do estudo, uma nova arquitetura foi desenvolvida, composta por dois modelos hierárquicos, especializados em comportamentos distintos, e uma fase inicial, responsável pela segmentação da série em períodos de alta ou baixa volatilidade. Ambas as arquiteturas se mostraram superiores aos modelos estabelecidos como parâmetros de comparação, em relação tanto ao erro percentual absoluto médio obtido nos experimentos quanto, também, à captura da dinâmica da série, comprovando que a manipulação eficiente de informações de contexto gera benefícios para o modelo e resulta em previsões de maior qualidade.