Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
VENTURA, Charly Braga
|
Orientador(a): |
IZIDORO, Sandro Carvalho
|
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Itajubá
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Ciência e Tecnologia da Computação
|
Departamento: |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/4008
|
Resumo: |
A demanda do mundo por café aumenta a cada ano, atingindo, no período de 2022- 2023, 178,5 milhões de sacas de 60 kg, um aumento de 1,7% em relação ao período anterior de 2021-2022. A produção total da safra de café do Brasil no ano de 2022 foi calculada em 50,92 milhões de sacas de 60 kg de café beneficiado1, tornando assim o maior produtor mundial do produto. Com esse volume de produção, há uma necessidade crescente de melhoria da qualidade do produto devido às exigências dos mercados nacional e internacional. Porém, pragas como o bicho-mineiro e a ferrugem causam grandes danos em plantações de café, resultando em perdas da cultura anualmente. Vários métodos e técnicas vêm sendo desenvolvidas e aplicadas para avaliação do nível de infestação e controle destas pragas. Entre essas técnicas estão o uso de visão computacional e rede neural convolucional (CNN). Assim, o objetivo deste trabalho foi o desenvolvimento de ferramentas computacionais para identificar corretamente a presença de pragas, reduzindo o tempo de avaliação, o erro do avaliador e os gastos com mão de obra. As acurácias desses métodos desenvolvidos ficaram entre 99,67% e 97,00%. Além disso, foi desenvolvida uma ferramenta para quantificar o grau de infestação, alcançando uma acurácia de 86,67%. |