Some generalizations of minimax theorems for lower semicontinuous functionals and a new approach for logarithmic Schrödinger equations.

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: SILVA, Ismael Sandro da.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Humanidades - CH
PÓS-GRADUAÇÃO EM MATEMÁTICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/35901
Resumo: O presente trabalho é soerguido em duas direções principais: primeiro, desenvolvem-se novos teoremas abstratos para uma classe de funcionais semi- contínuos inferiormente da seguinte forma: dado X um espaço de Banach, I = Φ + Ψ : X −→ (−∞, ∞] ́e uma soma de um funcional Φ de classe C 1 com um funcional convexo e semicontínuo inferiormente Ψ : X −→ (−∞, ∞] (Ψ ̸≡ ∞). Nossos resultados são referentes à Teoria dos Pontos Críticos para funcionais n ̃ao- diferenciaveis construída por Szulkin em [81]; é-se provada uma generalização do teorema da fonte de Bartsch [23] e também de um teorema devido a Heinz em [61] relacionado com a noção do gênero de conjuntos fechados e simétricos com respeito á origem. Uma versão do teorema do passo da montanha sim étrico é também provada. Como aplica ̧c ̃ao dos resultados abstratos mencionados, mostra-se a existência de uma infinidade de soluções para uma ampla classe de problemas elípticos. Os problemas envolvem não-linearidades logarítmicas, não-lineradades descontínuas e o operador 1-Laplaciano. Posteriormente, como uma consequência natural de nossos estudos, introduzimos uma nova abordagem para o estudo das equações logar ́ıtmicas que nos possibilita aplicar métodos variacionais clássicos para funcionais de classe C 1 no intuito de obter soluções para diferentes classes de equações logar ́ıtmicas de Schrödinger. Essa nova ideia ́e introduzida utilizando-se técnicas exploradas no estudo dos espaços de Orlicz. Os resultados obtidos garantem desde resultados de multiplicidade de soluções para equações logar ́ıtmicas de Schrödinger envolvendo a categoria de Lusternik-Schnirelmann, `a existência de soluções positiva para uma classe de equações logar ́ıtmicas sobre um dom ́ınio exterior, considerando diferentes condições de contorno.