Identificação de litofácies de poços de petróleo utilizando um método baseado em redes neurais artificiais.

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: CUNHA, Elisângela Silva da.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4240
Resumo: O principal objetivo deste trabalho é propor, implementar e avaliar um método para identificar automaticamente litofácies (unidades litológicas) a partir de dados de perfis e testemunhos de poços de petróleo. A identificação de litofácies é importante para ajudar na determinação da caracterização de um reservatório e na análise da viabilidade econômica de um poço. Um perfil de poço contém informações sobre as rochas sedimentares que ocorrem ao longo de um intervalo de profundidade, usando uma resolução abaixo de um metro, além de informações de porosidade e permeabilidade. A identificação manual de litofácies a partir de perfis de poços, geralmente, consome muito tempo, envolve a análise de grandes volumes de dados e requer conhecimento específico (algumas vezes heurístico). Uma descrição detalhada das unidades litológicas pode ser obtida através de uma análise de testemunho (amostra real da rocha), mas este processo é muito caro e é realizado apenas para alguns poços. Assim, a necessidade de um método computacional para resolver este problema se torna óbvia. O método proposto consiste em utilizar uma abordagem baseada em Redes Neurais para descobrir conhecimento em uma base de dados de perfis e testemunhos. A base de dados foi fornecida pela Agência Nacional do Petróleo (ANP) e contém dados do Campo Escola de Namorado, no Rio de Janeiro. Tentativas anteriores de resolver este problema usando Redes Neurais utilizaram um conjunto muito limitado e genérico de litofácies e usaram dados de apenas 5 poços. Neste trabalho, foram utilizados 8 poços. As principais etapas do método proposto foram implementadas e validadas a partir do conjunto de dados reais. A taxa média de identificação de litofácies ficou em torno de 80 %. Uma solução para o problema só foi possível após a incorporação de uma estratégia para agrupamento prévio das litofácies e tratamento de padrões problemáticos (regiões de conhecimento incerto nos conjuntos de treinamento e de teste).