Uma contribuição ao ensino de números irracionais e de incomensurabilidade para o ensino médio.
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Ciências e Tecnologia - CCT PÓS-GRADUAÇÃO EM MATEMÁTICA EM REDE PROFMAT (SBMAT) UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2161 |
Resumo: | Este trabalho tem como proposta pedagógica apresentar aos alunos o conceito de segmentos comensuráveis e de segmentos incomensuráveis, mostrando a importância desses conceitos para o estudo dos números racionais e irracionais. Veremos um processo de verificação da comensurabilidade de dois segmentos, doravante P.V.C.D.S, que é um processo geométrico de verificação de comensurabilidade de dois segmentos. A partir do P.V.C.D.S, apresentamos a demonstração clássica de que p2 é irracional, com uma abordagem geométrica, mostrando que o segmento do lado de um quadrado de medida 1 e o segmento de sua diagonal são incomensuráveis. Ainda apresentamos um estudo sobre expressões decimais, no qual será apresentado um teorema que nos permite verificar se uma fração irredutível possui representação decimal finita ou infinita e periódica. Também apresentamos outro teorema que nos permite transformar expressões decimais finitas e infinitas e periódicas na sua forma de fração. Por fim, apresentaremos algumas sugestões de atividades, que englobam todo conteúdo do presente TCC. Essas atividades foram aplicadas a uma turma de 1 ano do Ensino Médio de uma escola pública, e as respostas dos alunos estão anexadas ao trabalho. |