Reconhecimento de padrões de crescimento urbano em imagens de satélite utilizando aprendizagem profunda e teoria dos valores extremos.
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/24922 |
Resumo: | O reconhecimento de padrões de crescimento urbano em imagens de satélite apresenta aplicações que variam desde o entendimento da dinâmica da urbanização, até inferir a expansão urbana futura. Tanto a disponibilidade de inventários globais de uso da superfície terrestre, baseados em sensoriamento remoto, quanto os avanços nos métodos de aprendizado profundo, oferecem uma oportunidade para impulsionar o estado da arte dos modelos existentes para este fim. Essa tarefa tem amplas implicações para a preparação para desastres, meio ambiente, desenvolvimento de infraestrutura e prevenção de epidemias, além de desenvolver novos métodos de visão computacional para dados de séries temporais. Inspirados por modelos sequenciais, esse trabalho propõe um método para a detecção de anomalias, ou alterações, utilizando o algoritmo Peaks Over Threshold (POT), uma abordagem probabilística paramétrica com base na Teoria dos Valores Extremos que não requer limites definidos manualmente e não pressupõe a distribuição dos dados. O algoritmo foi aplicado às representações obtidas por uma rede neural convolucional (arquitetura U-Net) de modo a reconhecer e detectar possíveis alterações na geografia das regiões, tirando proveito de uma sequência temporal de imagens de sensoriamento remoto extraída do conjunto de dados SpaceNet. Os resultados mostram que, apesar da resolução moderada dos dados, foi possível rastrear identificadores de alterações na superfície terrestre temporalmente. Os resultados validam a eficácia do método proposto na detecção de novidades com resultados de 91,34% e 85% para F-score e revocação, respectivamente, bem como um F-beta de 87,42%, pontuação que representa a média harmônica ponderada de precisão e revocação. Em comparação com a literatura, os resultados reportados por três pesquisas correlatas são de 90%, 71,16% e 69% para o F-score, exclusivamente, sem registro de métricas adicionais. O uso do algoritmo POT em conjunto com uma rede convolucional de arquitetura U-Net, aplicados ao conjunto de dados SpaceNet trouxe evidências experimentais de que se trata de uma abordagem promissora para fornecer automaticamente detecções de mudanças ou alterações espaço-temporais na superfície terrestre em aplicações práticas. |