Hipersuperfícies tipo-espaço completas com curvatura média constante imersas no Steady State Space.
Ano de defesa: | 2011 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Ciências e Tecnologia - CCT PÓS-GRADUAÇÃO EM MATEMÁTICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2452 |
Resumo: | Neste trabalho estudamos hipersuperfícies tipo-espaço completas com curvatura média constante em uma região aberta do espaço de Sitter, chamada Steady State Space. Primeiro estabelecemos fórmulas adequadas para o Laplaciano de uma função altura e de uma função suporte naturalmente relacionadas com estas hipersuperfícies. Em seguida, considerando hipóteses apropriadas sobre a curvatura média e o crescimento da função altura, obtemos condições necessárias para a existência de tais hipersuperfícies. No caso bidimensional, estabelecemos e mostramos resultados tipo- Bernstein. Além disso, mostramos que se a hipersuperfície está entre dois slices então a sua curvatura média é igual a um. Obtemos também outras consequências para hipersuperfícies que estão abaixo de um slice. Por fim, estendemos um de nossos resultados para um certo espaço Robertson-Walker generalizado. |