Hipersuperfícies tipo-espaço completas com curvatura média constante imersas no Steady State Space.

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: SOUSA, Bruno Fontes de.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Ciências e Tecnologia - CCT
PÓS-GRADUAÇÃO EM MATEMÁTICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2452
Resumo: Neste trabalho estudamos hipersuperfícies tipo-espaço completas com curvatura média constante em uma região aberta do espaço de Sitter, chamada Steady State Space. Primeiro estabelecemos fórmulas adequadas para o Laplaciano de uma função altura e de uma função suporte naturalmente relacionadas com estas hipersuperfícies. Em seguida, considerando hipóteses apropriadas sobre a curvatura média e o crescimento da função altura, obtemos condições necessárias para a existência de tais hipersuperfícies. No caso bidimensional, estabelecemos e mostramos resultados tipo- Bernstein. Além disso, mostramos que se a hipersuperfície está entre dois slices então a sua curvatura média é igual a um. Obtemos também outras consequências para hipersuperfícies que estão abaixo de um slice. Por fim, estendemos um de nossos resultados para um certo espaço Robertson-Walker generalizado.