Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Pinheiro, Diego da Silva |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/22258
|
Resumo: |
The results of this work can be seen as giving a sort of heuristic explanation of why it is so hard to give examples of non totally geodesic, complete, spacelike, cmc hypersurfaces Mn of a Lorentzian group Gn+1. More precisely, let N be a timelike unit vector field on M and suppose that the Ricci curvature of G in the direction of N is greater than or equal to − H2 n , where H is the mean curvature of M with respect to N. If M is compact and transversal to a timelike element of the Lie algebra of G, then we show that it is a lateral class of a Lie subgroup of G and, as such, totally geodesic in G. If M is noncompact and parabolic, then we get the same result, provided M has bounded hyperbolic Gauss map. We also discuss some related examples and, along the way, give a simple proof of the parabolicity of a Riemannian product of a compact and a parabolic Riemannian manifold. |