Um mecanismo de atenção visual integrando evidências espaciais e temporais.

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: SANTOS, Sandberg Marcel.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2384
Resumo: Sistemas visuais biológicos utilizam uma estratégia que prioriza a extração das informações mais relevantes à execução de uma determinada tarefa visual, reduzindo assim a quantidade de recursos computacionais necessários para realizá-la. Tomando como inspiração essa estratégia, tem-se a Atenção Visual, área da Visão Computacional que se preocupa com o processamento de cenas visuais, procurando encontrar as regiões mais salientes (mais importantes de serem analisadas). Nesse contexto, o presente trabalho propõe um novo modelo de Atenção Visual que integra diferentes abordagens: Atenção Espacial (ou Estática) bottom-up, Atenção Temporal (ou Dinâmica) e Visão Estéreo. Este trabalho também desenvolve, para as duas primeiras abordagens, uma implementação que é validada através de uma série de experimentos. Apresentam-se uma estratégia para se realizar a segmentação de objetos móveis em cenas visuais, como parte integrante do modelo proposto, e um estudo de caso envolvendo a utilização das evidências temporais, obtidas pelo sistema de Atenção Visual desenvolvido, no problema de detecção de transições abruptas em seqüências de vídeo. Os resultados obtidos indicaram que a estratégia proposta para a extração de características temporais e para a detecção de objetos móveis se constituiu em uma forma simples e versátil para se realizar a detecção e a segmentação de movimento em vídeos. Já no que se refere aos experimentos envolvendo a detecção de transições abruptas, foi realizada uma avaliação de desempenho, na qual foram observadas taxas de erro reduzidas. Finalmente, a integração de características espaciais no contexto acima resultou em uma estratégia interessante para se combinar evidências das Atenções Espacial e Temporal.