Localização e reconhecimento de placas de sinalização utilizando um mecanismo de atenção visual e redes neurais artificiais.

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: RODRIGUES, Fabrício Augusto.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4314
Resumo: Esta dissertação tem como principal objetivo investigar o problema da detecção e reconhecimento de placas de sinalização utilizando dados de uma câmera de vídeo acoplada a um carro em movimento. Foi projetada a arquitetura de um protótipo de sistema de reconhecimento contendo dois módulos principais: um Módulo de Detecção para automaticamente localizar placas de trânsito dentro de cada quadro em uma seqüência de imagens; e um Módulo de Reconhecimento para classificar as regiões localizadas em cada cena, com base num conjunto prévio de imagens treinadas. Para o Módulo de Detecção, nós utilizamos um mecanismo de atenção baseado em saliência (bottom-up), o qual é constituído a partir de uma Pirâmide Gaussiana, bem como a partir de operadores locais de orientação. Testes com este mecanismo apresentaram resultados promissores uma vez que, sinais estavam presentes na maioria das regiões salientes. Experimentos preliminares com o Módulo de Reconhecimento sozinho apresentaram bons resultados, com taxa média de reconhecimento em torno de 84%. Entretanto, ao utilizar as saídas do Módulo de Detecção, em que as imagens não necessariamente são centralizadas. o uso de um classificador neural monolítico apresentou, para todas as classes, resultados insatisfatórios. Devido a este problema, foram realizados alguns experimentos simples envolvendo redes neurais de classificação binária nos quais se demonstrou a viabilidade de utilização de uma estratégia de classificação combinando as saídas destes classificadores. Os resultados também indicaram que melhores taxas de reconhecimento poderiam ser atingidas através de um aumento no número de exemplos de treinamento.