Controladores neurais adaptativos.

Detalhes bibliográficos
Ano de defesa: 1994
Autor(a) principal: CAVALCANTI, José Homero Feitosa.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/10535
Resumo: 0 principal objetivo desta Tese e demonstrar que, para alguma classe de sistemas não lineares cujo modelo se conhece parcialmente, e possível empregar redes neurais artificiais multicamadas (RNMC) para implementar uma estrategia de controle adaptativa, sem que seja necessário o treinamento prévio "offline" da rede. Inicialmente, são apresentados resultados experimentais e resultados obtidos com simuladores, no controle da velocidade e do posicionamento de um motor CC. Os resultados experimentais foram obtidos com controladores convencionais, representados por controladores tipo PID e controladores adaptativos baseados em modelos de referencia, e por controladores não convencionais, representado por controladores neurais. Os resultados obtidos com os simuladores e com a comparação entre os controladores convencionais e não convencionais, foram usados para o projeto da arquitetura da rede neural artificial do controlador. Usando os principais controladores neurais descritos na literatura especializada, especificamente os controladores neurais direto, indireto e baseado em funções não lineares, foram feitos estudos experimentais e em tempo real com esses controladores. Usando o conhecimento do jacobiano do motor CC, mostrou-se que esses controladores podem se tornar controladores adaptativos. Mostrou-se também que para o motor CC, e possível transformar o controlador neural direto num controlador adaptativo. Usando-se o jacobiano da planta, desenvolveu-se o conceito de estado passivo que permite o treinamento "on line" da RNMC, sem o seu prévio treinamento "off line" , com relativa segurança, evitando um treinamento a priori prolongado da RNMC. Esse conceito também possibilitou a sintonia fina do controlador em tempo real. Algumas considerações sobre a arquitetura da RNMC foram verificadas usando o controlador neural adaptativo. Apresentou-se um método para se calcular o número ótimo dos neurônios na camada oculta da RNMC. Definiu-se o fator de adaptação para o controlador neural direto e se apresentou um método para determinar o seu valor ótimo. Para mostrar experimentalmente a capacidade de generalização do controlador neural adaptativo direto, associou-o a regras fuzzy e se implementou um sistema controlador neural adaptativo para posicionamento do braco de um pendulo invertido acoplado ao eixo de um motor CC.