Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Gaspareto, Otavio Barcelos |
Orientador(a): |
Barone, Dante Augusto Couto |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/153317
|
Resumo: |
No presente trabalho, é testada e avaliada a aplicação de Redes Neurais Artificiais no combate de trapaças (cheating, em inglês) do tipo speed cheating em jogos online massivos de múltiplos jogadores, também conhecidos como MMOG (Massively Multi- player Online Games). Os MMOG representam um modelo de negócio onde quantias significativas de recursos financeiros estão envolvidas, e crescem a cada dia. Os mode- los para o combate de trapaças, que possam afastar jogadores de jogos ou servidores, estão localizados na camada de rede, à nível de protocolo. Analisando o estado-da-arte, constatou-se que não existem trabalhos explorando a área de Inteligência Artificial para este fim, tornando-se assim relevante o estudo de sua aplicabilidade. As Redes Neurais Artificiais foram escolhidas por terem grande poder de abstração, generalização e plasti- cidade. Através dos resultados obtidos comparando-se duas abordagens de arquiteturas, as redes Perceptron de múltiplas camadas (MLP) e as redes com atraso no tempo focadas (FTLFN), é possível constatar que é viável a utilização das mesmas para este fim, tendo-se alcançado resultados positivos no combate de speed cheating em MMOGs. |