Sobre a geometria de imersões isométricas no espaço hiperbólico com aplicação de Gauss prescrita.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: RAMALHO, André Felipe Araujo.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Ciências e Tecnologia - CCT
PÓS-GRADUAÇÃO EM MATEMÁTICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2456
Resumo: Neste trabalho, estudamos a geometria de uma subvariedade Mn, n 2, imersa isometricamente no espaço hiperbólico Hn+p, p 1, com algumas condições prescritas sobre sua aplicação de Gauss N. No caso p = 1, inicialmente, nosso objetivo é mostrar que uma hipersuperfície completa Mn, com curvatura média constante, é totalmente umbílica, desde que N(Mn) esteja contida em uma hipersuperfície tipo-espaço totalmente umbílica do espaço de Sitter Sn+11 . Em seguida, mostramos outro resultado para a mesma conclusão, mas, desta vez, supomos que Mn tenha curvatura escalar limitada por baixo e que N(Mn) esteja contida em uma certa região de Sn+11 determinada por algum vetor a do espaço de Lorentz-Minkowski Ln+2. Por m, no caso p > 1, estabelecemos condições suficientes para garantir que uma subvariedade completa Mn, com vetor curvatura média paralelo, seja pseudo-umbílica. Em particular, concluímos que, diante de tais condições, Mn é uma subvariedade mínima de uma pequena hiperesfera de Hn+p.