Detalhes bibliográficos
Ano de defesa: |
1996 |
Autor(a) principal: |
Costa, José Alfredo Ferreira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18133/tde-23012018-135451/
|
Resumo: |
As áreas de visão computacional e redes neurais artificiais (RNAs) e suas aplicações, tiveram um enorme progresso em pesquisa e aplicações práticas nos últimos anos. Sistemas de inspeção visual automática têm despertado muita atenção na indústria pois provêem meios econômicos, eficientes e precisos de obtenção de controle de qualidade. Porém, apesar do grande avanço tecnológico, a maioria dos sistemas existentes, com exceção de alguns poucos experimentais, são especializados e foram projetados para inspecionar um único objeto ou peça, de tipo previamente conhecido, e em posição, orientação e distância em relação à câmara altamente restritas. Este trabalho descreve um sistema de reconhecimento de imagens contendo múltiplos objetos de classes aleatórias e tolerante a ruído. Um estágio de pré-processamento filtra parte do ruído e segmenta regiões conectadas da imagem (RCI). A classificação dos padrões é feita com redes neurais de múltiplas camadas a partir de atributos invariantes calculados sobre as RCis. No final do processo temos uma listagem dos objetos contidos na cena, suas posições e orientações, os quais podem servir de entrada a um sistema de entendimento da cena, de mais alto nível, ou para outras máquinas, como um manipulador automático. Outros parâmetros podem ser utilizados para normalizar, em escala, orientação e posição, os padrões contidos na imagem, para efeito de comparações com imagens e parâmetros dos objetos previamente armazenados em bancos de dados. Dois métodos de treinamento de RNAs foram testados, o gradiente conjugado e o Levenberg-Marquardt, em conjunção com simulated annealing, para diferentes condições de erro e conjuntos de atributos. Imagens reais e sintéticas foram utilizadas para efeitos de testes de classificação correta e rejeição de padrões espúrios. Resultados são apresentados e comentados, destacando a capacidade de generalização do sistema mesmo com elevada degradação da imagem pelo ruído. Uma das vantagens do tipo de RNA empregado é a velocidade de execução, que permite ao sistema ser integrado a uma linha de montagem industrial. O sistema foi projetado com a utilização de recursos acessíveis e de baixo custo, sendo executado em computadores pessoais, e podendo ser facilmente adaptado para o uso em pequenas e médias empresas. |