Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Freitas, Lucas Ismaily Bezerra |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/9599
|
Resumo: |
In this thesis we study the conjecture of Tuza, which relates covering of triangles (by edges) with packing of edge-disjoint triangles in graphs. In 1981, Tuza conjectured that for any graph, the maximum number of edge-disjoint triangles is at most twice the size of a minimum cover of triangles by edges. The general case of the conjecture remains open. However, several attempts to prove it appeared in the literature, which contain results for several classes of graphs. In this thesis, we present the main known results for the conjecture of Tuza. Currently, there are several versions of Tuza’s conjecture. Nevertheless, we emphasize that our focus is on conjecture applied to simple graphs. We also present a conjecture that, if verified, implies the validity of the conjecture of Tuza. We also show that if G is a mininum counterexample to the conjecture of Tuza, then G is 4-connected. We can deduce from this result that the conjecture of Tuza is valid for graphs with no K5 minor. |