Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Teixeira, Cícero Silvano |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/10514
|
Resumo: |
Microorganisms are a valuable tool for the expression of proteins from a variety of sources, including plants, animals and other microorganisms. Thus, chitinases, a group of glycosil hydrolases capable to hydrolize chitin, have already been expressed and purified from different systems including bacteria and yeast. Chitin, a linear polymer of N-acetyl-β-D-glucosamine (GlcNAc), is an important structural component found in the crustacean shells, in the peritrophic membrane of insect guts as well as in the fungi cell walls. The aim of this work was to express a chitinase (encoded by the ORF CV3316) from Chromobacterium violaceum ATCC 12472, using the methylotrophic yeast Pichia pastoris strains GS115 and KM71H. Furthermore, purification and partial characterization of the recombinant protein were also achieved. The GS115 strain carrying the expression cassette pPICZαA-CV3316 was selected due to its higher expression level as compared to KM71H strain. Immobilized metal ion affinity chromatography was employed to purify the recombinant chitinase which was eluted as a single peak at 0.04 M imidazol. The homogeneity of the purified protein was confirmed as judged by polyacrylamide gel electrophoresis (SDS-PAGE). In these conditions, the recombinant chitinase migrated as a single protein band with an apparent molecular mass of about 87 kDa. Thus, a chitinase from C. violaceum ATCC 12472 was successfully expressed in P. pastoris and the soluble recombinant protein purified. The content of secondary structure was investigated by circular dichroism (CD) spectroscopy. At 24 oC the CD spectrum revealed secondary structure contents of 37% (alpha helix), 26% (beta sheet) and 38% (random coil). The CD spectra obtained in the temperature range 10-50 oC were characteristic of beta sheet. In contrast, the CD spectra generated in the range 60-90 oC were characteristic of alpha helix. The midpoint temperature of this conformational transition was 59.6 ±1.2 oC as calculated from the CD experimental data. Fluorescence spectroscopy was carried out with excitation at 280 and 290 nm, producing emission spectra in which the wavelengths of maximum emission were 339 and 342 nm, respectively. This behavior is characteristic of tryptophan residues in limited contact with water. Chitinolytic activity against several substrates and the pH dependency of the enzymatic activity of the pure protein were all accessed. The purified enzyme showed hydrolytic activity on the following substrates: colloidal chitin (1,189.4 U.mgP-1), 4-nitrophenyl N-N’-diacetyl--D-chitobioside (30,411.0 U.mgP-1) and 4-nitrophenyl β-D-N-N’-N”-triacetylchitotriose (13,150.0 U.mgP-1); and, respectively. In contrast, no activity was detected using 4-nitrophenyl N-acetyl-β-D-glucosaminide as substrate. The enzyme presented an optimal chitinolytic activity at pH 5.0 using colloidal chitin as a substrate. Additionally, the antifungal activity against the phytopathogenic fungi, Fusarium solani, Fusarium oxysporum, Rhizoctonia solani and Penicillium herquei was investigated. The recombinant chitinase did not inhibit the spore germination and the mycelium growth of the tested fungi, at the 0.63 mgP.ml-1 concentration. Further studies should be carried out in order to discover potential applications of this protein as a biotechnological tool in the control of other phytopathogenic fungi as well as economically important pests. |