Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Teixeira, Maria Daniele Azevedo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/2748
|
Resumo: |
Parkinson’s disease (PD) is a neurodegenerative disorder reported since antiquity and characterized for neuronal dopaminergic loss mainly in the substantia nigra (SN). Epidemiological studies suggest association between depression and PD and stress has been implicated in causing depression. The currently available therapies can not prevent the progression of PD, but are able to contain the symptoms. Neuroprotective agents have been reported as able to change the course of the disease, stopping dopaminergic neurodegeneration. Many of these agents are derived from plants with antioxidant actions, as catechin, a flavonoid found in green tea. In order to study the neuroprotective effects of catechin, the present study evaluated the effects of this compound on motor behavior, memory, Immunohistochemistry, biochemical evaluation and determination of catecholamines in an animal model of PD by 6-OHDA. Another stage of the study also evaluated the effects of stress associated with PD on the same parameters, in an animal model of subchronic restraint stress (11d/6hrs). Animals (male Wistar rats, 200-250g) were treated with catechin (10 and 30mg/kg ip) daily for 16 days, starting at the time of injury by striatal 6-OHDA. Results show that 6-OHDA increased the number of rotations contralateral to the lesion induced by apomorphine and catechin in the two doses was able to reverse the 6-OHDA damage. There was a recovery of exploratory activity and working memory promoted by catechin in both doses. Catechin in a dose of 30mg worsened the aversive memory. 6-OHDA decreased the immunoreactivity for tyrosine hydroxylase (TH) and dopamine transporter (DAT) in striatum and midbrain, and promote a decrease in GSH levels. Catechin in two doses in animals injured by 6-OHDA was able to increase the immunoreactivity for TH and DAT, significantly increasing the levels of GSH compared to lesioned animals by 6-OHDA. 6-OHDA caused neuronal death demonstrated by decreasing levels of catecholamines, catechin, in turn, was able to reverse these levels. The subchronic restraint stress did not reverse the number of contralateral rotations induced by apomorphine, neither improved the working memory of the damage by 6-OHDA, but was able to increase the number of crossings and improve the aversive memory. Stressed subchronic animals led to an increase in immobilization time in the forced swimming test, which was not observed in animals that were only striatal injury. There was a decrease in weight gain in animals subjected to stress. There was a slight increase of immunoreactivity for TH and DAT in animals subjected to stress and injury by 6-OHDA. In relation to catecholamines, there was a partial reversal in the levels of noradrenaline and serotonin by the effect of stress. Results of this study demonstrate that both catechin and immobilization stress were neuroprotective in this experimental model of PD. The catechin in a dose of 30mg was both oxidant and pro-oxidant. Restraint stress appears to have exerted a priming in animals, protecting, in a way, the toxic effects of 6-OHDA. |