Predição de desempenho de estudantes em ambientes virtuais de aprendizagem

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Bezerra, André Alves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Ceará
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/31662
Resumo: In this work, we investigate the using of Educational Data Mining (EDM) techniques based on Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA) for data reduction and Multilayer Perceptron (MLP) to predict student’s performance on Learning Environments Systems (LMS). LMS are web-based educational software that provides classes and online assignments, and generate a large volume of data on student’s interactions in the environment. The method proposed, with the data used in this study, obtained better results in the prediction of the academic performance of students when compared to other methods approached in the literature.