Lipschitz geometry and combinatorics of abnormal surface germs

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Souza, Emanoel Ferreira de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/64366
Resumo: We study outer Lipschitz geometry of real semialgebraic or, more general, definable in a polynomially bounded o-minimal structure over the reals, surface germs. In particular, any definable Hölder triangle is either Lipschitz normally embedded or contains some abnormal arcs. We show that abnormal arcs constitute finitely many abnormal zones in the space of all arcs, and investigate geometric and combinatorial properties of abnormal surface germs. We establish a strong relation between geometry and combinatorics of abnormal Hölder triangles.