Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Souza, Emanoel Ferreira de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/64366
|
Resumo: |
We study outer Lipschitz geometry of real semialgebraic or, more general, definable in a polynomially bounded o-minimal structure over the reals, surface germs. In particular, any definable Hölder triangle is either Lipschitz normally embedded or contains some abnormal arcs. We show that abnormal arcs constitute finitely many abnormal zones in the space of all arcs, and investigate geometric and combinatorial properties of abnormal surface germs. We establish a strong relation between geometry and combinatorics of abnormal Hölder triangles. |