Explorando calibragem ponderada, balanceamentos e métricas para justiça em sistemas de recomendação

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Silva, Diego Correa da lattes
Outros Autores: Silva, Diego Corrêa da
Orientador(a): Durão, Frederico Araújo lattes
Banca de defesa: Marinho, Leandro Balby lattes, Rios, Tatiane Nogueira lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Bahia
Instituto de Computação
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação (PGCOMP) 
Departamento: Instituto de Matemática
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufba.br/handle/ri/34643
Resumo: Sistemas de recomendação são ferramentas utilizadas para sugerir itens, que possivelmente sejam de interesse dos usuários. Estes sistemas baseiam-se no histórico de preferências do usuário para gerar uma lista de sugestões que possuam maior similaridade com o perfil do usuário, visando uma melhor precisão e um menor erro. É esperado que, ao ser recomendado um item, o usuário informe sua preferência ao sistema, indicando se gostou ou o quanto gostou do item recomendado. A interação do usuário com o sistema possibilita um melhor entendimento de seus gostos, que com o tempo, adiciona mais e mais itens a seu perfil de preferências. A recomendação baseada em similaridade do item com as preferências buscando a melhor precisão pode causar efeitos colaterais na lista como: superespecialização das recomendações em um determinado núcleo de itens, pouca diversidade de categorias e desbalanceamento de categoria ou gênero. Assim, esta dissertação tem como objetivo explorar a calibragem, que é um meio para produzir recomendações que sejam relevantes aos usuários e ao mesmo tempo considerar todas as áreas de suas preferências, buscando evitar a desproporção na lista de recomendação. Para isto, foram abordadas formas de ponderar o balanceamento entre a relevância das recomendações e a calibragem baseada em medidas de divergência, assim como um modelo de sistema calibrado e um protocolo de decisão. A hipótese é que a calibragem pode contribuir positivamente para recomendações mais justas de acordo com a preferência do usuário. A pesquisa foi realizada através de uma ampla abordagem propondo um modelo de sistema e um protocolo de decisão que contempla em seu experimento nove algoritmos de recomendação aplicados nos domínios de filme e música, analisando três medidas de divergência, dois pesos de balanceamento personalizado e dois balanceamentos entre relevância-calibragem. A avaliação foi analisada com métricas amplamente utilizadas, assim como métricas propostas neste trabalho. Os resultados indicam que a calibragem produz efeitos positivos tanto para a precisão da recomendação quanto para a justiça com as preferências do usuário, criando listas de recomendação que respeitem todas as áreas. Os resultados também indicam qual é a melhor combinação para obter um melhor desempenho ao aplicar as propostas de calibragem.