Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Souza, Rodrigo Ferrari de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-11072024-151014/
|
Resumo: |
Em grande parte das aplicações de sistemas de recomendação é importante aumentar o engajamento dos usuários, de modo a apresentar novos conteúdos de seu interesse. Para isso, podem ser utilizados alguns algoritmos de recomendação, como os algoritmos de filtragem colaborativa, que promovem itens similares àqueles que os usuários se interessam, ajudando-os a descobrir novos tipos de conteúdo de que gostam. No entanto, trabalhos recentes mostraram que esse tipo de abordagem apresenta uma conexão entre injustiça, erro de calibração e viés de popularidade nos Sistemas de Recomendação. Ainda que o viés de popularidade promova o consumo de itens mais populares, esse fenômeno também afeta a calibração e justiça das recomendações, onde os gostos de certos usuários não são representados de maneira justa pelo sistema, enquanto outros usuários recebem recomendações consistentes com suas preferências. Nesse sentido, alguns dos trabalhos mais recentes em calibração focam apenas em fornecer recomendações mais justas, não considerando o viés de popularidade que pode amplificar o efeito de cauda longa. Embora outros trabalhos tentem reduzir o impacto do viés de popularidade, não levam em conta o nível de preferência dos usuários por essa característica. Para preencher essa lacuna de pesquisa, o nosso objetivo neste trabalho é estudar formas de calibrar o sistema para trazer recomendações coerentes com as preferências dos usuários e que reduzam o impacto do viés de popularidade. Assim, a proposta é a realização de um estudo sobre abordagens de calibração e de redução do viés de popularidade que tragam recomendações coerentes com os interesses dos usuários de acordo com diferentes níveis de popularidade, sem afetar consideravelmente o nível de satisfação dos usuários com o conteúdo recomendado. Esta pesquisa apresenta contribuições relacionadas à calibração, justiça, experiência do usuário e métricas de avaliação do sistema. |