Imersões PPMC em espaços hiperbólicos e imersões plurimínimas em espaços produto
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas - Universidade Federal do Pará
Instituto de Ciências Exatas Brasil UFAM - UFPA Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/5890 |
Resumo: | Neste trabalho provamos que variedades Kãhler imersas mínima ou pluriminimante no espaço produto E"(c) x IR, onde En(c) é um espaço de curvatura seccional constante c # O, são superfícies. Enquanto as imersas pluriminimamente em CP" x IR admitem um aberto denso folheado por subvariedades holomorfas ou antiholomorfas de CP". Além disso, para variedades Kãhler compactas com primeira classe de Chern positiva, provamos que as imersões pluríminimas em CP" x IR são holomorfas em CP". Estudamos também imersões ppmc semi-isotrópica de variedades Kãhler no espaço hiperbólico e concluímos que, ou elas são decomponíveis no espaço de Lorentz, ou são provenientes de imersões ppmc no Rn, ou são imersões de superfícies com curvatura média paralela. Como consequência, verificamos que imersões ppmc de variedades Kãhler com primeira classe de Chern positiva no espaço hiperbólico ou são decomponíveis no espaço de Lorentz, ou são provenientes de imersões ppmc no Rn. |