Imersões PPMC em espaços hiperbólicos e imersões plurimínimas em espaços produto

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Almeida, Kelly Alves Marães de
Outros Autores: http://lattes.cnpq.br/8415442901565242
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas - Universidade Federal do Pará
Instituto de Ciências Exatas
Brasil
UFAM - UFPA
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/5890
Resumo: Neste trabalho provamos que variedades Kãhler imersas mínima ou pluriminimante no espaço produto E"(c) x IR, onde En(c) é um espaço de curvatura seccional constante c # O, são superfícies. Enquanto as imersas pluriminimamente em CP" x IR admitem um aberto denso folheado por subvariedades holomorfas ou antiholomorfas de CP". Além disso, para variedades Kãhler compactas com primeira classe de Chern positiva, provamos que as imersões pluríminimas em CP" x IR são holomorfas em CP". Estudamos também imersões ppmc semi-isotrópica de variedades Kãhler no espaço hiperbólico e concluímos que, ou elas são decomponíveis no espaço de Lorentz, ou são provenientes de imersões ppmc no Rn, ou são imersões de superfícies com curvatura média paralela. Como consequência, verificamos que imersões ppmc de variedades Kãhler com primeira classe de Chern positiva no espaço hiperbólico ou são decomponíveis no espaço de Lorentz, ou são provenientes de imersões ppmc no Rn.