Imersões isométricas em variedades homogêneas de dimensão 3
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Ciências Exatas Brasil UFAM Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/5986 |
Resumo: | Um problema clássico em geometria é encontrar condições para que uma variedade seja imersa isometricamente em outra. Neste trabalho, apresentamos condições necessárias e suficientes para que uma variedade Riemanniana simplesmente conexa de dimensão 2 seja imersa em uma variedade Riemanniana homogênea simplesmente conexa de dimensão 3, com grupo de isometria de dimensão 4. Veremos que tais condições estão expressas em termos da métrica, da segunda forma fundamental e de alguns dados envolvendo um certo campo de Killing definido no espaço ambiente. Este resultado foi obtido por Benoît Daniel no artigo intitulado: "Isometric immersions into 3-dimensional homogeneous manifolds"e possui resultados relevantes para a geometria diferencial. As ferramentas para demonstrar o teorema são baseadas na utilização do método do referencial móvel e distribuições integráveis. |