Liardetector: a linguistic-based approach for identifying fake news
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Computação Brasil UFAM Programa de Pós-graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.ufam.edu.br/handle/tede/7686 |
Resumo: | Devido à infraestrutura da Web existente e à popularidade das plataformas de mídia sociais, é fácil compartilhar informações de forma massiva. Embora esse cenário online traga benefícios para a sociedade, ele também favorece que grupos maliciosos propaguem desinformação (notícias falsas) na Web, causando danos que vão desde afetar a reputação de entidades públicas (empresas, celebridades) a interferir em processos políticos. Neste trabalho, propomos uma nova abordagem de classificação baseada em padrões linguísticos para identificar notícias falsas. Tal abordagem reduz a dimensionalidade do espaço de características ao codificar distribuições de probabilidade de tokens (por exemplo, palavras) como valores de divergência e entropia. Nós descrevemos resultados experimentais, usando vários conjuntos de dados, que mostram que nossa abordagem é uma solução que melhora tanto a eficácia, quanto eficiência de modelos de aprendizagem. Em comparação com o \textit{baseline}, nossa abordagem usa quatro ordens de magnitude menos atributos e obtém um ganho de até 74,3% de eficácia (Medida-F). |