Sobre o fluxo de curvatura no Plano Hiperbólico
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Ciências Exatas Brasil UFAM Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.ufam.edu.br/handle/tede/9324 |
Resumo: | Esta dissertação é baseada no artigo ``{\it Soliton solutions to the curve shortening flow on the 2-dimensional hyperbolic space}" de da Silva e Tenenblat \cite{Ket}. Nosso objetivo é apresentar a demonstração que caracteriza quando uma curva regular é um soliton do fluxo de curvatura. A saber, uma curva regular $X : I \rightarrow\mathbb{H}^2$ parametrizada pelo comprimento de arco é um soliton do fluxo de curvatura se, e somente se, sua curvatura geodésica é igual ao pseudo-produto interno entre seu campo de vetores tangente e um vetor não nulo do espaço de Minkowski. Esse resultado permite estabelecer uma relação entre os solitons e um sistema de equações diferenciais ordinárias. Por meio da análise qualitativa do sistema, é possível mostrar que os solitons são curvas definidas em toda reta, mergulhadas em $\mathbb{H}^2$ e sua curvatura geodésica, em cada fim, converge para $-1$, $0$ ou $1$. |