Superfícies mínimas completas e estáveis em R3

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Bandeira, Ivana Soares
Outros Autores: http://lattes.cnpq.br/1141174632142247
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Ciências Exatas
BR
UFAM
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/3690
Resumo: Neste trabalho estamos interessados em responder a seguinte questão: Uma superfície tridimensional mínima, completa e estável é um plano? Para isso precisamos compreender três fatos importantes: os planos são as únicas superfícies mínimas que podem ser obtidas gráficos (Teorema de Bernstein), em seguida, superfícies mínimas que são gráficos de funções diferenciáveis são estáveis (Teorema de J. L. Barbosa e M. Do Carmo), e por fim, temos que as únicas superfícies tridimensionais, mínimas, completas, estáveis e orientáveis são os planos (Teorema de M. do Carmo e C. K. Peng)