Teorema de Bersntein para gráficos mínimos em R^n, (3,<=n,,=6)
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/EABA-9GXNT3 |
Resumo: | The classic Bernstein theorem says that, if a function u : R2 ! R is anentire solution to the minimal surface equationdiv ru p1 + jruj2!= 0then u is a linear function, that is, the graph of u is necessarily a plan. Ifwe consider u : Rn1 ! R, a version of this theorem remains valid untiln 8, counter-examples were found in higher dimensions. Our main goal in this work is to show that this theorem is true for n 6. We will also show that if a hypersurface in the euclidean space is complete, minimal, stable and parabolic then it is necessarily a plan. |