Avaliação de métodos de classificação baseados em regras de associação para detecção de malwares android

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Rocha, Vanderson da Silva
Outros Autores: http://lattes.cnpq.br/8598944580181017, https://orcid.org/0000-0003-3103-7749
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/9430
Resumo: Esta pesquisa tem por objetivo investigar o desempenho e a viabilidade de diferentes modelos de regras de associação no contexto de classificação de malwares Android. Para tanto, desenvolvemos um novo modelo de classificação baseado em regras de associação e qualidade de regras. Para fins de comparação dos modelos, utilizamos datasets conhecidos e frequentemente usados para o treino de modelos de detecção de \malwares Android. Os resultados demonstram que nosso modelo possui desempenho equivalente a outros modelos baseados em regras de associação, obtendo valores de acurácia acima de 85\%, e em alguns casos sobressaindo-se a modelos de aprendizagem de máquina.