Avaliação de métodos de classificação baseados em regras de associação para detecção de malwares android
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Outros Autores: | , |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Computação Brasil UFAM Programa de Pós-graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.ufam.edu.br/handle/tede/9430 |
Resumo: | Esta pesquisa tem por objetivo investigar o desempenho e a viabilidade de diferentes modelos de regras de associação no contexto de classificação de malwares Android. Para tanto, desenvolvemos um novo modelo de classificação baseado em regras de associação e qualidade de regras. Para fins de comparação dos modelos, utilizamos datasets conhecidos e frequentemente usados para o treino de modelos de detecção de \malwares Android. Os resultados demonstram que nosso modelo possui desempenho equivalente a outros modelos baseados em regras de associação, obtendo valores de acurácia acima de 85\%, e em alguns casos sobressaindo-se a modelos de aprendizagem de máquina. |