Identificação por decomposição de sinais de consumo de energia elétrica
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Faculdade de Tecnologia Brasil UFAM Programa de Pós-graduação em Engenharia Elétrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/5529 |
Resumo: | Na técnica de identificação por decomposição de sinais de consumo de energia elétrica, inferimos o consumo dos dispositivos que compõem um sinal de consumo de energia elétrica. Essa técnica, também denominada de desagregação ou moni- toramento não intrusivo, é relevante porque viabiliza obtermos informação sobre o consumo energético individualizado de dispositivos, o que permite outras abordagens sobre o gerenciamento energético, viabiliza uso em redes inteligentes (smart grids) e internet das coisas (IoT). O problema de desagregação de energia pode ser tra- tado através de técnicas por dicionários onde extraímos representatividades de um conjunto de dados de consumo de energia elétrica e realizamos a desagregação. Em nossa proposta, podemos destacar duas contribuições. Na primeira, modificamos o algoritmo steady-state identification (SSI) para contemplar sinais com dimensões variáveis e, a seguir, realizamos uma análise de parâmetros que influenciam na for- mação dos dicionários e, por consequência, produzem diferentes desempenhos de desagregação. Na segunda, propomos uma metodologia de desagregação por análise de componentes principais. Os experimentos realizados, utilizando a base de dados REDD [1], demonstram que a proposta produz resultados de desagregação de maior acurácia, quando comparado com outras técnicas. |