Metodologia para modelos de nowcasting de dados de atividade

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Dobrianskyj, Guilherme Martinho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.insper.edu.br/handle/11224/6029
Resumo: O trabalho utiliza uma técnica de nowcasting de atividade para diversos países, que possuem diferentes características e qualidades de dados econômicos. São utilizados dados mensais para o nowcast do Produto Interno Bruto dos países, que são dados trimestrais. Ao considerar tempo de execução, robustez a ruídos e flexibilidade de implementação, são utilizadas técnicas baseadas em Análise de Componentes Principais e regressões lineares robustas a ruídos (Huber regression). A fim de modelar a jagged edge (quando, em determinado dia, é sabido apenas alguns dos dados utilizados no modelo), é utilizado um Vetor Autorregressivo com uma defasagem. Os nowcasters construídos mostram boa capacidade preditiva, porém possuem alta dependência na qualidade e histórico dos dados utilizados